网址:http://m.1010jiajiao.com/timu_id_70771[举报]
1-15 D AC AC A ABAA BC
13.
14.40 15.
或
16.
17.证明:(Ⅰ)
函数
在
上为增函数;
(Ⅱ)反证法:假设存在,满足
则
这与矛盾,假设错误
故方程没有负数根
18.解:依题意有:= a,
=2ax+
(x<2)
方程为
=0
与圆相切
=
a=
19.解:(Ⅰ),
……………………………2分
∴,
……………………………3分
又,
……………………………4分
∴曲线在
处的切线方程为
, …………5分
即.
…………………6分
(Ⅱ)由消去
得
,解得
,
,……7分
所求面积, …………9分
设,则
, …………10分
∴
.
……………………12分
21.(1)当时
,当
时,
.
由条件可知,,即
解得
∵ ………….5分
(2)当时,
即
故m的取值范围是
…………….12分
22. 解:(I)因为,所以
----1分
,
解得,
------------------------3分
此时,
当时
,当
时
,
----------5分
所以时
取极小值,所以
符合题目条件;
----------6分
(II)由得
,
当时,
,此时
,
,
,所以
是直线
与曲线
的一个切点;
-----8分
当时,
,此时
,
,
,所以
是直线
与曲线
的一个切点;
-----------10分
所以直线l与曲线S相切且至少有两个切点;
对任意x∈R,,
所以
因此直线是曲线
的“上夹线”. ---------------------14分
22.【解】(Ⅰ)
∴的增区间为
,
减区间为
和
.
极大值为,极小值为
.…………4′
(Ⅱ)原不等式可化为由(Ⅰ)知,
时,
的最大值为
.
∴的最大值为
,由恒成立的意义知道
,从而
…8′
(Ⅲ)设
则.
∴当时,
,故
在
上是减函数,
又当、
、
、
是正实数时,
∴.
由的单调性有:
,
即.…………12′
已知函数f(x)=,g(x)=alnx,a
R。
(1) 若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2) 设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对
(2)中的(a),证明:当a
(0,+
)时,
(a)
1.
(本小题满分14分)
已知函数f(x)=,g(x)=alnx,a
R。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对(2)中的(a),证明:当a
(0,+
)时,
(a)
1.
(本小题满分14分)
已知函数f(x)=,g(x)=alnx,a
R。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对(2)中的(a),证明:当a
(0,+
)时,
(a)
1.