摘要:即 故所求直线L的方程为
网址:http://m.1010jiajiao.com/timu_id_70088[举报]
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
查看习题详情和答案>>
已知直线(1+3m)x-(3-2m)y-(1+3m)=0(m∈R)所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为3.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点,若
≤|FA|•|FB|≤
,求直线l的斜率的取值范围.
查看习题详情和答案>>
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点,若
| 12 |
| 5 |
| 18 |
| 7 |
已知直线l的参数方程为
(t为参数),若以直角坐标系xoy的原点O点为极点,以x轴正半轴为极轴,选取相同的长度单位建立极坐标系,曲线C的极坐标方程为ρ=2sin(θ+
),若直线l与曲线C交于A、B两点.
(I)求直线l的倾斜角及l与坐标轴所围成的三角形的面积;
(II)求|AB|.
查看习题详情和答案>>
|
| π |
| 4 |
(I)求直线l的倾斜角及l与坐标轴所围成的三角形的面积;
(II)求|AB|.
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
,向量
=
.
(I)求矩阵M的特征值λ1、λ2和特征向量
1和
;
(II)求M6
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
)=2
.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2≥
(a+b+c)2;
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵M=
|
| ξ |
|
(I)求矩阵M的特征值λ1、λ2和特征向量
| ξ |
| ξ2 |
(II)求M6
| ξ |
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
|
| π |
| 4 |
| 2 |
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2≥
| 1 |
| 3 |
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.