摘要:15.已知点P的坐标为(1.1).若将点P绕著原点旋转45°.得到点P1.则P1点的坐标为
网址:http://m.1010jiajiao.com/timu_id_685575[举报]
| 3 |
(1)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=
6
| ||
| x |
(2)若△OAB绕点O按逆时针方向旋转α度(0<α<360).
①当α=30°时,点B恰好落在反比例函数y=
| k |
| x |
②问点A、B能否同时落在①中的反比例函数的图象上?若能,直接写出α的值;若不能,请说明理由. 查看习题详情和答案>>
| x | … | -2 | 0 | 2 | 3 | … |
| y | … | 5 | -3 | -3 | 0 | … |
(2)若将抛物线m,绕原点O顺时针旋转180°,试写出旋转后抛物线n的解析式,并在坐标系中画出抛物线m、n的草图;
(3)若抛物线n的顶点为N,与x轴的交点为E、F(点E、F分别与点A、B对应),试问四边形NFMB是何种特殊四边形?并说明其理由.
已知:如图1,二次函数y=a(x-1)2-4的图象交x轴负半轴于点A,交x轴正半轴于点B,交y轴负半轴于点C,且OB=3OA.
(1)求二次函数的解析式;
(2)如图2,M是抛物线的顶点,P是抛物线在B点右侧上一点,Q是对称轴上一点,并且AQ⊥PQ,是否存在这样的点P,使得∠PAQ=∠AMQ?若存在,请求出P点坐标;若不存在,请说明理由.
(3)如图3,设(1)中抛物线的顶点为M,R为x轴正半轴上一点,将(1)中抛物线绕R旋转180°得到抛物线C1:y=-a (x-h)2+k交x轴于D,E两点.若tan∠BME=1,求R点的坐标.

查看习题详情和答案>>
(1)求二次函数的解析式;
(2)如图2,M是抛物线的顶点,P是抛物线在B点右侧上一点,Q是对称轴上一点,并且AQ⊥PQ,是否存在这样的点P,使得∠PAQ=∠AMQ?若存在,请求出P点坐标;若不存在,请说明理由.
(3)如图3,设(1)中抛物线的顶点为M,R为x轴正半轴上一点,将(1)中抛物线绕R旋转180°得到抛物线C1:y=-a (x-h)2+k交x轴于D,E两点.若tan∠BME=1,求R点的坐标.