摘要:探究二: 在等腰Rt△ABC中.请你找出其它的裁剪线.把分割成的两部分拼出不同类型的特殊四边形. (1)试一试――你能拼得所有不同类型的特殊四边形有 , 他们的裁剪线分别是 , (2)画一画――请在图③中画出一个你拼得的特殊四边形示意图.
网址:http://m.1010jiajiao.com/timu_id_671721[举报]
把一个等腰Rt△ABC;沿斜边上的离线CD(裁剪线)剪一刀,从这一个三角形中裁下一部分,与剩下部分能拼成一个平行四边形见示意图①.以下探究过程中有画图要求的,工具不限,不必写画法和证明.
探究一:
(1)想一想――判断四边形是平行四边形的依据.
(2)做一做――按上述的裁剪方法,请你拼一个与图①位置或形状不同的平行四边形,并在图②中画出示意图.
探究二:
在等腰Rt△ABC中.请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.
(1)试一试――你能拼得所有不同类型的特殊四边形有_________;
他们的裁剪线分别是_______;
(2)画一画――请在图③中画出一个你拼得的特殊四边形示意图.
查看习题详情和答案>>(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.
![](http://thumb.zyjl.cn/pic3/upload/images/201201/83/8da23186.png)
请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.
查看习题详情和答案>>
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.
![](http://thumb.zyjl.cn/pic3/upload/images/201201/83/8da23186.png)
请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.