摘要:(2)如图②.已知是线段BC的中点.现沿着由B到的方向.将△DBC平移到的位置.连结..得到四边形是什么特殊的四边形?说明你的理由.
网址:http://m.1010jiajiao.com/timu_id_671714[举报]
如图①,已知等边△ABC和等边△DBC有公共的底边BC
(1)以图①中的某个点为旋转中心,旋转△ABC和△DBC重合则旋转中心为________(写出所有满足条件的点);
(2)如图②,已知是线段BC的中点,现沿着由B到的方向,将△DBC平移到的位置,连结,,得到四边形是什么特殊的四边形?说明你的理由.
(3)在四边形中有_________对全等三角形?请你选出其中一对进行证明.
查看习题详情和答案>>
如图,海事救援指挥中心A接到海上SOS呼救:一艘渔船B在海上碰到暗礁,船体漏水下沉,5名船员需要援救.经测量渔船B到海岸最近的点C的距离BC=20km,∠BAC=22°37′,指挥中心立即制定三种救援方案(如图1):
①派一艘冲锋舟直接从A开往B;②先用汽车将冲锋舟沿海岸线送到点C,然后再派冲锋舟前往B;③先用汽车将冲锋舟沿海岸线送到距指挥中心33km的点D,然后再派冲锋舟前往B.
已知冲锋舟在海上航行的速度为60km/h,汽车在海岸线上行驶的速度为90km/h.
(sin22°37′=
,cos22°37′=
,tan22°37′=
)
(1)通过计算比较,这三种方案中,哪种方案较好(汽车装卸冲锋舟的时间忽略不计)?
(2)事后,细心的小明发现,上面的三种方案都不是最佳方案,最佳方案应是:先用汽车将冲锋舟沿海岸线送到点P处,点P满足cos∠BPC=
(冲锋舟与汽车速度的比),然后再派冲锋舟前往B(如图2).请你说明理由!
如果你反复探索没有解决问题,可以选取①、②、③两种研究方法:
方案①:在线段上AP任取一点M;然后用转化的思想,从几何的角度说明汽车行AM加上冲锋舟行BM的时间比车行AP加上冲锋舟行BP的时间要长.
方案②:在线段上AP任取一点M;设AM=x;然后用含有x的代数式表示出所用时间t;
方案③:利用现有数据,根据cos∠BPC=
计算出汽车行AP加上冲锋舟行BP的时间.
查看习题详情和答案>>
①派一艘冲锋舟直接从A开往B;②先用汽车将冲锋舟沿海岸线送到点C,然后再派冲锋舟前往B;③先用汽车将冲锋舟沿海岸线送到距指挥中心33km的点D,然后再派冲锋舟前往B.
已知冲锋舟在海上航行的速度为60km/h,汽车在海岸线上行驶的速度为90km/h.
(sin22°37′=
5 |
13 |
12 |
13 |
5 |
12 |
(1)通过计算比较,这三种方案中,哪种方案较好(汽车装卸冲锋舟的时间忽略不计)?
(2)事后,细心的小明发现,上面的三种方案都不是最佳方案,最佳方案应是:先用汽车将冲锋舟沿海岸线送到点P处,点P满足cos∠BPC=
2 |
3 |
如果你反复探索没有解决问题,可以选取①、②、③两种研究方法:
方案①:在线段上AP任取一点M;然后用转化的思想,从几何的角度说明汽车行AM加上冲锋舟行BM的时间比车行AP加上冲锋舟行BP的时间要长.
方案②:在线段上AP任取一点M;设AM=x;然后用含有x的代数式表示出所用时间t;
方案③:利用现有数据,根据cos∠BPC=
2 |
3 |
查看习题详情和答案>>
如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点P,Q分别从A,B同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为t s.
(1)设点Q的运动速度为 cm/s.
①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为a cm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.