摘要:(3)连接.如图2.在轴下方的抛物线上是否存在点.使得与相似?若存在.求出点的坐标,若不存在.说明理由.
网址:http://m.1010jiajiao.com/timu_id_671552[举报]
如图,在平面直角坐标系中,已知点B(-2
,0),A(m,0)(-
<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由. 查看习题详情和答案>>
2 |
2 |
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由. 查看习题详情和答案>>
如图,在平面直角坐标系中,抛物线y=x2-2x-4与直线y=x交于点A、B,M是抛物线上一个动点,连接OM.
(1)当M为抛物线的顶点时,求△OMB的面积;
(2)当点M在抛物线上,△OMB的面积为10时,求点M的坐标;
(3)当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大.
查看习题详情和答案>>
(1)当M为抛物线的顶点时,求△OMB的面积;
(2)当点M在抛物线上,△OMB的面积为10时,求点M的坐标;
(3)当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大.
查看习题详情和答案>>
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(-
,0),B(2,0),且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)点P是x轴下方的抛物线上一动点,连接PO,PC,并把△POC沿CO翻折,得到四边形POP′C,求出使四边形POP′C为菱形的点P的坐标;
(3)在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在,求出Q点的坐标;若不存在,说明理由. 查看习题详情和答案>>
1 | 2 |
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)点P是x轴下方的抛物线上一动点,连接PO,PC,并把△POC沿CO翻折,得到四边形POP′C,求出使四边形POP′C为菱形的点P的坐标;
(3)在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在,求出Q点的坐标;若不存在,说明理由. 查看习题详情和答案>>
如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值. 查看习题详情和答案>>
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN•OP | MN+OP |
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值. 查看习题详情和答案>>