摘要: 如图.在矩形ABCD中.AD=8,点E是AB边上的一点.AE=,过D,E两点作直线PQ.与BC边所在的直线MN相交于点F.(1)求tan∠ADE的值,(2)点G是线段AD上的一个动点.GH⊥DE垂足为H.设DG为x.四边形AEHG的面积为y.请求出y与x之间的函数关系式,
网址:http://m.1010jiajiao.com/timu_id_659169[举报]
如图,在矩形ABCD中,AD=12cm,AB=,三角形的直角形顶点P在线段BC上,一直角边与线段AD的交点为Q,另一直角边与线段AB的交点为E,点P从C开始向B以2cm/s的速度运动,点Q从D开始以1cm/s的速度向点A运动,假设P、Q两点开始运动,运动时间为ts.
(1)当t=1,时,PQ的长是多少?
(2)当时,点Q运动多长时间点E与A重合?
(3)当时,①设BE的长为y cm,试求之间的函数关系式.②是否存在某个时刻,使点E与点A重合?若存在,求出点P、点Q的运动时间;若不存在,请求出AE的最小值.
查看习题详情和答案>>如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2,过D、E两点作直线PQ,与BC边所在的直线MN相交点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点(不运动至点A、D),GH⊥DE垂足为H,设DG为x,四边形AEHG的面积为y;请求出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切,问满足条件的⊙O有几个?并请求出其中一个圆的半径.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点(不运动至点A、D),GH⊥DE垂足为H,设DG为x,四边形AEHG的面积为y;请求出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切,问满足条件的⊙O有几个?并请求出其中一个圆的半径.
如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.