网址:http://m.1010jiajiao.com/timu_id_655503[举报]
某校500名学生参加一次测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),测试分数在70~80分数段的学生有 名.
分数段 |
60~70 |
70~80 |
80~90 |
90~100 |
频率 |
0.25 |
|
0.25 |
0.2 |
查看习题详情和答案>>
某校组织初三学生电脑技能竞赛,每班参加比赛的学生人数相同,竞赛成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.
(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为 ;
|
平均数(分) |
中位数(分) |
众数(分) |
(1)班 |
|
90 |
90 |
(2)班 |
88 |
|
100 |
(2)请你将表格补充完整:
(3)试运用所学的统计知识,从二个不同角度评价初三(1)班和初三(2)班的成绩.
查看习题详情和答案>>
请尝试解决以下问题:
(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,
由旋转可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)运用(1)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.
(2)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD+CE
=DE
始终成立,请说明理由.
查看习题详情和答案>>
某中学七年级学生共450人,其中男生250人,女生200人。该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:
成绩 |
划记 |
频数 |
百分比 |
不及格 |
|
9 |
10% |
及格 |
|
18 |
20% |
良好 |
|
36 |
40% |
优秀 |
|
27 |
30% |
合计 |
90 |
90 |
100% |
(1)请解释“随即抽取了50名男生和40名女生”的合理性;
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;
(3)估计该校七年级学生体育测试成绩不合格的人数。
查看习题详情和答案>>
为了了解全区近6000名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)
分组(分) |
40~50 |
50~60 |
60~70 |
70~80 |
80~90 |
90~100 |
频数 |
12 |
18 |
180 |
|
|
|
频率 |
|
|
|
|
0.16 |
0.04 |
根据上表信息,由此样本请你估计全区此次测试成绩在70~80分的人数大约是 .
查看习题详情和答案>>