摘要:如图.是一张放在平面直角坐标系中的直角三角形纸片.点与原点重合.点在轴上.点在轴上...将折叠.使边落在边上.点与点重合.折痕为.
网址:http://m.1010jiajiao.com/timu_id_655466[举报]
如图,是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在轴上,点B在轴上,。将折叠,使BO边落在BA边上,点O与点D重合,折痕为BC;
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由。
查看习题详情和答案>>
如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,.
(1
)在边上取一点,将纸片沿翻折,使点落在边上的点处,求点,的坐标;(2
)若过点的抛物线与轴相交于点,求抛物线的解析式和对称轴方程;(3
)若(2)中的抛物线与轴交于点,在抛物线上是否存在点,使的内心在坐标轴上?若存在,求出点的坐标,若不存在,请说明理由.(4
)(本小题为附加题,满分3分,计入卷面总分.如果你有时间,不妨试一试!)若(2)中的抛物线与轴相交于点,点在线段上移动,作直线,当点移动到什么位置时,两点到直线的距离之和最大?请直接写出此时点的坐标及直线的解析式.
查看习题详情和答案>>
OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.求B′点的坐标;
(2)求折痕CM所在直线的解析式. 查看习题详情和答案>>
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.求B′点的坐标;
(2)求折痕CM所在直线的解析式. 查看习题详情和答案>>
OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕y1所在直线的解析式;
(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E'.
①求折痕AD所在直线的解析式;
②再作E'F∥AB,交AD于点F.若抛物线y=-
x2+h过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数.
(3)如图3,一般地,在OC、OA上选取适当的点D'、G',使纸片沿D'G'翻折后,点O落在BC边上,记为E''.请你猜想:折痕D'G'所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想. 查看习题详情和答案>>
(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕y1所在直线的解析式;
(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E'.
①求折痕AD所在直线的解析式;
②再作E'F∥AB,交AD于点F.若抛物线y=-
1 | 12 |
(3)如图3,一般地,在OC、OA上选取适当的点D'、G',使纸片沿D'G'翻折后,点O落在BC边上,记为E''.请你猜想:折痕D'G'所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想. 查看习题详情和答案>>