摘要:②若抛物线与轴交于点.是否存在这样的抛物线.使△ABC为直角三角形,若存在.求出抛物线的解析式,若不存在.说明理由. 五.(本大题只有1题.满分12分.题满分各为4分.4分.4分)
网址:http://m.1010jiajiao.com/timu_id_650789[举报]
如图,抛物线与
轴交于A、B两点(点A在点B左侧),与y轴交
于点C,且当=0和
=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。
查看习题详情和答案>>.如同,抛物线与
轴交于C、A两点,与y轴交于点B,OB=4点O关于直线AB的对称点为D,E为线段AB的中点.
(1) 分别求出点A、点B的坐标
(2) 求直线AB的解析式
(3) 若反比例函数的图像过点D,求
值.
(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q
每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值,若不存在,请说明理由.
![]() |
查看习题详情和答案>>
如图,抛物线与
轴交于
两点,与
轴交于
点.
(1)请求出抛物线顶点的坐标(用含
的代数式表示),
两点的坐标;
(2)经探究可知,与
的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明
理由.
查看习题详情和答案>>