摘要:(1)请在横线上直接写出抛物线的解析式: ,
网址:http://m.1010jiajiao.com/timu_id_650312[举报]
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
,
).
(1)请在横线上直接写出抛物线C2的解析式: ;
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由. 查看习题详情和答案>>
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b |
2a |
4ac-b2 |
4a |
(1)请在横线上直接写出抛物线C2的解析式:
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由. 查看习题详情和答案>>
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
(1)请在横线上直接写出抛物线C2的解析式: ;
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由. 查看习题详情和答案>>
(1)请在横线上直接写出抛物线C2的解析式:
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由. 查看习题详情和答案>>
24、已知抛物线m:y=ax2+bx+c (a≠0) 与x轴交于A、B两点(点A在左),与y轴交于点C,顶点为M,抛物线上部分点的横坐标与对应的纵坐标如下表:
(1)根据表中的各对对应值,请写出三条与上述抛物线m有关(不能直接出现表中各对对应值)的不同类型的正确结论;
(2)若将抛物线m,绕原点O顺时针旋转180°,试写出旋转后抛物线n的解析式,并在坐标系中画出抛物线m、n的草图;
(3)若抛物线n的顶点为N,与x轴的交点为E、F(点E、F分别与点A、B对应),试问四边形NFMB是何种特殊四边形?并说明其理由.
查看习题详情和答案>>
x | … | -2 | 0 | 2 | 3 | … |
y | … | 5 | -3 | -3 | 0 | … |
(2)若将抛物线m,绕原点O顺时针旋转180°,试写出旋转后抛物线n的解析式,并在坐标系中画出抛物线m、n的草图;
(3)若抛物线n的顶点为N,与x轴的交点为E、F(点E、F分别与点A、B对应),试问四边形NFMB是何种特殊四边形?并说明其理由.