网址:http://m.1010jiajiao.com/timu_id_64637[举报]
一、选择题(每小题5分,共60分)
BDACC ACDDB AA
二、填空题(每小题4分,共16分)
13.; 14. 15.―192 16.
三、解答题(共74分)
17.解:(I)由正弦定理,有
代入得
即
(Ⅱ)
由得
所以,当时,取得最小值为0
18.解:(I)由已知得
故
即
故数列为等比数列,且
由当时,
所以
(Ⅱ)
所以
19.解:(I)从50名教师随机选出2名的方法为=1225,选出2人使用教材版本相同的方法数
故2人使用版本相同的概率为。
(Ⅱ)
的分布为
0
1
2
20.解(I)由该四棱锥的三视图可知,该四棱锥的底面是边长为1的正方形,
侧棱底面,且,
(Ⅱ)不论点E在何位置,都有
证明:连结是正方形,
底面,且平面,
又平面
不论点在何位置,都有平面
不论点E在何位置,都有。
(Ⅲ)以为坐标原点,所在的直线为轴建立空间直角坐标系如图:
则从而
设平面和平面的法向量分别为
,
由法向量的性质可得:
令则
设二面角的平面角为,则
二面角的大小为。
21.解:(1)由题意可知直线的方程为,
因为直线与圆相切,所以,即
从而
(2)设,则,
又
(
①当时,,解得,
此时椭圆方程为
②当时,,解得,
当,故舍去
综上所述,椭圆的方程为
22.解:(I)依题意,知的定义域为(0,+)
当时,
令,解得。
当时,;当时,
又所以的极小值为2-2,无极大值。
(Ⅱ);
令,解得。
(1)若令,得令,得
(2)若,
①当时,,
令,得或;
令,得
②当时,
③当时,得,
令,得或
令,得
综上所述,当时,的递减区间为,递增区间为
当时,的递减区间为;递增区间为
当时,递减区间为
当时,的递减区间为,递增区间为
(Ⅲ)当时, ,
由,知时,
依题意得:对一切正整数成立
令,则(当且仅当时取等号)
又在区间单调递增,得,
故又为正整数,得
当时,存在,对所有满足条件。
所以,正整数的最大值为32。
(1)若点C在线段OB上,且∠ACB=
3π |
4 |
(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84-108
3 |
某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
数学成绩 |
95 |
75 |
80 |
94 |
92 |
65 |
67 |
84 |
98 |
71 |
物理成绩 |
90 |
63 |
72 |
87 |
91 |
71 |
58 |
82 |
93 |
81 |
序号 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
数学成绩 |
67 |
93 |
64 |
78 |
77 |
90 |
57 |
83 |
72 |
83 |
物理成绩 |
77 |
82 |
48 |
85 |
69 |
91 |
61 |
84 |
78 |
86 |
某数学成绩90分(含90分)以上为优秀,物理成绩85分(含85分)以上为优秀.
有多少的把握认为学生的数学成绩与物理成绩之间有关系( )
A. 99.9% B. 99% C. 97.5% D. 95%
查看习题详情和答案>>
某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
数学成绩 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成绩 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
某数学成绩90分(含90分)以上为优秀,物理成绩85分(含85分)以上为优秀.有多少的把握认为学生的数学成绩与物理成绩之间有关系( )
A. 99.9% B. 99% C. 97.5% D. 95%
查看习题详情和答案>>