摘要:二次函数.若要使函数值永远小于零.则自变量x的取值范围是 A.X取任何实数 B.x<0 C.x>0 D.x<0或x>0
网址:http://m.1010jiajiao.com/timu_id_6197[举报]
下列表格是二次函数y=ax2 + b x +c的自变量x与函数值y的对应值,判断方程ax2+bx +c =0(a≠0,a、b、c为常数)的一个解x得范围是
[ ]
A.6 <x <6.17
B.6.17 <x <6.18
C.6.18 <x<6.19
D.6.19 <x<6.20
查看习题详情和答案>>
B.6.17 <x <6.18
C.6.18 <x<6.19
D.6.19 <x<6.20
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,
).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求抛物线的解析式;
(2)若点M、N时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)抛物线对称轴上是否存在一点F,使得△ACF是等腰三角形?若不存在请说明理由;若存在,请求出F点坐标.
查看习题详情和答案>>
3 |
(1)求抛物线的解析式;
(2)若点M、N时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)抛物线对称轴上是否存在一点F,使得△ACF是等腰三角形?若不存在请说明理由;若存在,请求出F点坐标.
请阅读下面材料:
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
∴
且 x1≠x2.
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
∴x1+x2=-
又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
,
∴直线x=
为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值. 查看习题详情和答案>>
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
x1+x2 |
2 |
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
∴
|
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
∴x1+x2=-
b |
a |
又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
b |
2a |
∴直线x=
x1+x2 |
2 |
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
x1+x2 |
2 |
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值. 查看习题详情和答案>>
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于点C(0,
),当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由. 查看习题详情和答案>>
3 |
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由. 查看习题详情和答案>>