网址:http://m.1010jiajiao.com/timu_id_60935[举报]
一、选择题:
1.D 2. B 3.B 4.A 5.C 6.D 7.C 8.C 9.D 10.D
二、填空题:
11.3 12. 13.1 14. 15.1005 16.①③④
三、解答题:
17.解:(本小题满分12分)
解:(I)……………………2分
由
解得…………………………5分
(II)解:由 -----------7分
------------------9分
-----------------12分
18.(本小题满分12分)
解: (Ⅰ)这5天的平均发芽率为
……5分
(Ⅱ)的取值情况有
,,
.基本事件总数为10. ……8分
设“”为事件,则事件包含的基本事件为 ……9分
所以,
故事件“”的概率为. ……12分
19.(本小题满分12分)
(Ⅰ)记与的交点为,
则,---------------1分
连接,且,
所以
则四边形是平行四边形, -------------------------------2分
则,又面ACE,
面ACE,故BF∥平面ACE; -----------------------------4分
(Ⅲ)(方法1)设点到平面的距离为,由于,且平面
所以, --------------------------10分
又,,
所以 -----------------------12分
(方法2)点到平面的距离等于点到平面的距离, ----------------9分
也等于点到平面的距离, -------------------------10分
该距离就是斜边上的高,即.-------------------12分
20.(本小题满分12分)
(Ⅰ) ------------------------3分
(Ⅱ)因第i行的第一个数是,
∴=.
∵,,
∴. ------------------------6分
令,
解得. ------------------------8分
(Ⅲ)∵ ------------------------9分
. -----------------12分
21. (本小题满分14分)
解:(Ⅰ)圆C方程化为:,
圆心C ………………………………1分
设椭圆的方程为,……………………………………..2分
则 ……………………………..5分
所以所求的椭圆的方程是: ………………………………………….6分
(Ⅱ)由题意可知直线的斜率存在,设直线斜率为,则直线的方程为,则有 .……………………………………..7分
设,由于、、三点共线,且.
根据题意得, …………9分
解得或. …………11分
又在椭圆上,故或, …………12分
解得,
所以直线的斜率为或 …………14分
22.(本小题满分14分)
解:(Ⅰ)当时,,
;………………2分
对于[1,e],有,∴在区间[1,e]上为增函数,…………3分
∴,.……………………………5分
(Ⅱ)令,
则的定义域为(0,+∞).…………………………………6分
在区间(1,+∞)上,
函数的图象恒在直线下方等价于在区间
(1,+∞)上恒成立.
② 若,则有,此时在区间(1,+∞)上恒有,
从而在区间(1,+∞)上是减函数;……………………………………12分
要使在此区间上恒成立,只须满足,
由此求得的范围是[,].
综合①②可知,当∈[,]时,函数的图象恒在直线下方.
………………………………………………14分
(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“m ,n均不小于25”的概率.
(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:回归直线的方程是,其中,,)
查看习题详情和答案>>(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“m ,n均不小于25”的概率.
(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:回归直线的方程是,其中,,)
查看习题详情和答案>>(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:回归直线的方程是,其中,,) 查看习题详情和答案>>
日 期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:回归直线的方程是,其中,,)
(本小题满分13分)
某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 |
3月1日 |
3月2日 |
3月3日 |
3月4日 |
3月5日 |
温差x(oC) |
10 |
11 |
13 |
12 |
8 |
发芽数y(颗) |
23 |
25 |
30 |
26 |
16 |
(I)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率;
(II)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(III)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(II)所得的线性回归方程是否可靠?
(参考公式:回归直线方程式,其中)
查看习题详情和答案>>