摘要:点P在曲线C:上.若存在过点P的直线与C的两个交点为=
网址:http://m.1010jiajiao.com/timu_id_58931[举报]
点P在曲线C:
+y2=1上,若存在过P的直线交曲线C于A点,交直线l:x=4于B点,满足|PA|=|PB|或|PA|=|AB|,则称点P为“H点”,那么下列结论正确的是( )
x2 |
4 |
A、曲线C上的所有点都是“H点” |
B、曲线C上仅有有限个点是“H点” |
C、曲线C上的所有点都不是“H点” |
D、曲线C上有无穷多个点(但不是所有的点)是“H点” |
点P到x轴的距离比它到点(0,1)的距离小1,称点P的轨迹为曲线C,点M为直线l:y=-m (m>0)上任意一点,过点M作曲线C的两条切线MA,MB,切点分别为A,B.
(1)求曲线C的轨迹方程;
(2)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(3)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.
查看习题详情和答案>>
(1)求曲线C的轨迹方程;
(2)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(3)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.