摘要:由椭圆的定义可知:2a>2c.即a>c.故a2-c2>0.
网址:http://m.1010jiajiao.com/timu_id_567519[举报]
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1:
+y2=1.
(1)若椭圆C2:
+
=1,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
+
=1和Mλ:
+
=λ2(a>b>0,0<λ<1)分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)
查看习题详情和答案>>
x2 |
4 |
(1)若椭圆C2:
x2 |
16 |
y2 |
4 |
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1:
+y2=1.
(1)若椭圆C2:
+
=1,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
+
=1和
+
=λ2(a>b>0,0<λ<1)分别交于点A,B和点C,D,证明:|AC|=|BD|
查看习题详情和答案>>
x2 |
4 |
(1)若椭圆C2:
x2 |
16 |
y2 |
4 |
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |