摘要:由条件.消去.得..
网址:http://m.1010jiajiao.com/timu_id_567101[举报]
设双曲线的两个焦点分别为、,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点能否作出直线,使与双曲线交于、两点,且,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
查看习题详情和答案>>
设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(Ⅰ)若直线与的斜率之积为,求椭圆的离心率;
(Ⅱ)若,证明直线的斜率 满足
【解析】(1)解:设点P的坐标为.由题意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为.
由条件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为.
由P在椭圆上,有
因为,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
查看习题详情和答案>>