摘要:(Ⅲ)试求满足的所有实数a解析:本小题主要考查函数.方程等基本知识.考查分类讨论的数学思想方法和综合运用数学知识分析问题.解决问题的能力.
网址:http://m.1010jiajiao.com/timu_id_567069[举报]
若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式≤f()成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.
查看习题详情和答案>>
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.
查看习题详情和答案>>
若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
≤f(
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.
查看习题详情和答案>>
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.
若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
≤f(
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.
查看习题详情和答案>>
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.