网址:http://m.1010jiajiao.com/timu_id_556606[举报]
1.C 2.D 3.A 4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B
13.2 14. 15.16.①③④
17.
18.解:
⑴ .
⑵在上单调递增,在上单调递减.
所以,当时,;当时,.
故的值域为.
19.解:⑴直线①,
过原点垂直于的直线方程为②
解①②得,
∵椭圆中心O(0,0)关于直线的对称点在椭圆C的右准线上,
∴, …………………(分)
∵直线过椭圆焦点,∴该焦点坐标为(2,0),
∴,
故椭圆C的方程为 ③…………………12分)
20.点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。
解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点均在函数的图像上,所以=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-
=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)
得知==,
故Tn==
=(1-
因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.
21.(1)
(2)由
令得,增区间为和,
减区间为
2
+
0
-
0
+
↑
↓
↑
由表可知:当时,
解得:
的取值范围为
22.(1)
(2)
(本题满分16分,其中第(1)小题4分,第(2)小题8分,第(3)小题4分)
设是两个数列,为直角坐标平面上的点.对若三点共线,
(1)求数列的通项公式;
(2)若数列{}满足:,其中是第三项为8,公比为4的等比数列.求证:点列(1,在同一条直线上;
(3)记数列、{}的前项和分别为和,对任意自然数,是否总存在与相关的自然数,使得?若存在,求出与的关系,若不存在,请说明理由.
查看习题详情和答案>>
给出下列四个函数:①f(x)=lnx;②f(x)=x2+1;③f(x)=e-x;④f(x)=sinx,其中满足:“对任意x1、x2∈(1,2),x1≠x2,不等式|f(x1)-f(x2)|<|x1-x2|总成立”的是________.(将正确的序中与填在横线上)
我们知道,如果定义在某区间上的函数满足对该区间上的任意两个数、,
总有不等式成立,则称函数为该区间上的向上凸函数(简称上凸).
类比上述定义,对于数列,如果对任意正整数,总有不等式:成立,
则称数列为向上凸数列(简称上凸数列). 现有数列满足如下两个条件:
(1)数列为上凸数列,且;
(2)对正整数(),都有,其中.
则数列中的第五项的取值范围为 ★ .
查看习题详情和答案>>