摘要:定义在R上的函数的导数.其中常数.则函数
网址:http://m.1010jiajiao.com/timu_id_548489[举报]
已知定义在实数集上的函数,其导函数记为,且满足,其中a、x1、x2为常数,x1≠x2.设函数g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求实数a的值;
(Ⅱ)若m=1,求函数g(x)的单调区间;
(Ⅲ)求函数g(x)在x∈[0,a]的图象上任一点处的切线斜率k的最大值.
查看习题详情和答案>>
已知定义在实数集上的函数,其导函数记为,且满足,其中a、x1、x2为常数,x1≠x2.设函数g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求实数a的值;
(Ⅱ)若m=1,求函数g(x)的单调区间;
(Ⅲ)求函数g(x)在x∈[0,a]的图象上任一点处的切线斜率k的最大值.
查看习题详情和答案>>
(Ⅰ)求实数a的值;
(Ⅱ)若m=1,求函数g(x)的单调区间;
(Ⅲ)求函数g(x)在x∈[0,a]的图象上任一点处的切线斜率k的最大值.
查看习题详情和答案>>
15、已知函数f(x)是定义在实数集R上的函数,给出下列结论:
①若存在常数x0,使f′(x)=0,则函数f(x)必在x0处取得极值;
②若函数f(x)在x0处取得极值,则函数f(x)在x0处必可导;
③若函数f(x)在R上处处可导,则它有极小值就是它在R上的最小值;
④若对于任意x≠x0都有f(x)>f(x0),则f(x0)是函数f(x)的最小值;
⑤若对于任意x<x0有f′(x)>0,对于任意x>x0有f′(x)<0,则f(x0)是函数f(x)的一个最大值;
其中正确结论的序号是
查看习题详情和答案>>
①若存在常数x0,使f′(x)=0,则函数f(x)必在x0处取得极值;
②若函数f(x)在x0处取得极值,则函数f(x)在x0处必可导;
③若函数f(x)在R上处处可导,则它有极小值就是它在R上的最小值;
④若对于任意x≠x0都有f(x)>f(x0),则f(x0)是函数f(x)的最小值;
⑤若对于任意x<x0有f′(x)>0,对于任意x>x0有f′(x)<0,则f(x0)是函数f(x)的一个最大值;
其中正确结论的序号是
④⑤
.