网址:http://m.1010jiajiao.com/timu_id_544332[举报]
某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.
(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;
(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由;
(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)
已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气.已知该净化设备的换气量是200m3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n次,且n趋向于无穷大.)
查看习题详情和答案>>4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2
随机变量的所有等可能取值为1,2…,n,若,则( )
A. n=3 B.n=4 C. n=5 D.不能确定
5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得
6.解析:因为只有一个零点,所以方程只有一个根,因此,所以
查看习题详情和答案>>已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分
【解析】第一问中设为曲线上的任意一点,则点在圆上,
∴,曲线的方程为
第二问中,设点的坐标为,直线的方程为, ………………3分
代入曲线的方程,可得
∵,∴
确定结论直线与曲线总有两个公共点.
然后设点,的坐标分别, ,则,
要使被轴平分,只要得到。
(1)设为曲线上的任意一点,则点在圆上,
∴,曲线的方程为. ………………2分
(2)设点的坐标为,直线的方程为, ………………3分
代入曲线的方程,可得 ,……5分
∵,∴,
∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)
………………6分
设点,的坐标分别, ,则,
要使被轴平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
当时,(*)对任意的s都成立,从而总能被轴平分.
所以在x轴上存在定点,使得总能被轴平分
查看习题详情和答案>>
|
|