摘要:.化为直角坐标方程得,
网址:http://m.1010jiajiao.com/timu_id_543447[举报]
在平面直角坐标系xOy中,已知直线l:2
x-y+3+8
=0和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
.
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围. 查看习题详情和答案>>
2 |
2 |
3 |
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围. 查看习题详情和答案>>
在平面直角坐标系xoy中,曲线C1的参数方程为
(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程. 查看习题详情和答案>>
|
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程. 查看习题详情和答案>>
在平面直角坐标系xOy中,已知定点A(-4,0),B(0,-2),半径为r的圆M的圆心M在线段AB的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为
r.
(1)若r为正常数,求圆M的方程;
(2)当r变化时,是否存在定直线l与圆相切?如果存在求出定直线l的方程;如果不存在,请说明理由.
查看习题详情和答案>>
3 |
(1)若r为正常数,求圆M的方程;
(2)当r变化时,是否存在定直线l与圆相切?如果存在求出定直线l的方程;如果不存在,请说明理由.