网址:http://m.1010jiajiao.com/timu_id_541004[举报]
一、选择题(本大题共8小题,每小题5分,共40分)
1.A 2.D 3.D 4.C 5.C 6.B 7.C 8.A
二、填空题(本大题共6小题,每小题5分,共30分)
9. 10.60 11.
12.(1) (2) 13.1, 14.,
注:两个空的填空题第一个空填对得2分,第二个空填对得3分.
三、解答题(本大题共6小题,共80分)
15.(本小题满分13分)
解:(Ⅰ)设等比数列的公比为,依题意有, (1)
又,将(1)代入得.所以.
于是有 ………………3分
解得或 ………………6分
又是递增的,故. ………………7分
所以. ………………8分
(Ⅱ),. ………………10分
故由题意可得,解得或.又, …………….12分
所以满足条件的的最小值为13. ………………13分
16. (本小题满分13分)
解:(Ⅰ)由 且,
所以. …………………4分
于是. …………7分
(Ⅱ)由正弦定理可得,
所以. …………………….10分
由得. ………………11分
即,
解得.即=7 . …………13分
17.(本小题满分14分)
解法一:(Ⅰ)∵正方形,∴
又二面角是直二面角,
∴⊥平面.
∵平面,
∴⊥.
又,,是矩形,是的中点,
∴=,,=,
∴⊥又=,
∴⊥平面,
而平面,故平面⊥平面 ……………………5分
(Ⅱ)如图,由(Ⅰ)知平面⊥平面,且交于,在平面内作⊥,垂足为,则⊥平面.
∴∠是与平面所成的角. ……………………7分
∴在Rt△中,=.
.
即与平面所成的角为 . ………………………9分
(Ⅲ)由(Ⅱ),⊥平面.作⊥,垂足为,连结,则⊥,
∴∠为二面角的平面角. ……………………….11分
∵在Rt△中,=,在Rt△中, .
∴在Rt△中, ………13分
即二面角的大小为arcsin. ………………………………14分
解法二:
如图,以为原点建立直角坐标系,
则(0,0,0),(0,2,0),
(0,2,2),(,,0),
(,0,0).
(Ⅰ) =(,,0),=(,,0),
=(0,0,2),
∴?=(,,0)?(,,0)=0,
? =(,,0)?(0,0,2)= 0.
∴⊥,⊥,
∴⊥平面,又平面,故平面⊥平面. ……5分
(Ⅱ)设与平面所成角为.
由题意可得=(,,0),=(0,2,2 ),=(,,0).
设平面的一个法向量为=(,,1),
由.
.
∴与平面所成角的大小为. ……………..9分
(Ⅲ)因=(1,-1,1)是平面的一个法向量,
又⊥平面,平面的一个法向量=(,0,0),
∴设与的夹角为,得,
∴二面角的大小为. ………………………………14分
18. (本小题满分13分)
解:(Ⅰ)设事件表示甲运动员射击一次,恰好击中9环以上(含9环),则
. ……………….3分
甲运动员射击3次均未击中9环以上的概率为
. …………………5分
所以甲运动员射击3次,至少有1次击中9环以上的概率为
. ………………6分
(Ⅱ)记乙运动员射击1次,击中9环以上为事件,则
…………………8分
由已知的可能取值是0,1,2. …………………9分
;
;
.
的分布列为
0
1
2
0.05
0.35
0.6
………………………12分
所以
故所求数学期望为. ………………………13分
19. (本小题满分14分)
解:(Ⅰ)由已知 ,故,所以直线的方程为.
将圆心代入方程易知过圆心 . …………………………3分
(Ⅱ) 当直线与轴垂直时,易知符合题意; ………………4分
当直线与轴不垂直时,设直线的方程为,由于,
所以由,解得.
故直线的方程为或. ………………8分
(Ⅲ)当与轴垂直时,易得,,又则
,故. 即. ………………10分
当的斜率存在时,设直线的方程为,代入圆的方程得
.则
,即,
.又由得,
则.
故.
综上,的值为定值,且. …………14分
另解一:连结,延长交于点,由(Ⅰ)知.又于,
故△∽△.于是有.
由得
3 |
(1)烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?
(2)当烟花在最高点爆裂时,位于烟花正东方的观众甲观赏烟花的仰角是45°,位于南偏西60°的观众乙观赏烟花的仰角是30°,求这时观众甲和观众乙相距多远(观众的身高忽略不记)? 查看习题详情和答案>>
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I. 查看习题详情和答案>>
|
|
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由. 查看习题详情和答案>>