摘要:(Ⅰ)试求函数的解析式,

网址:http://m.1010jiajiao.com/timu_id_538861[举报]

三、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空题

13.2      14. 31    15.     16.  2.

三、解答题

17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的单调递增区间为

18.(I)解:记这两套试验方案在一次试验中均不成功的事件为A,则至少有一套试验成功的事件为    由题意,这两套试验方案在一次试验中不成功的概率均为1-p.

所以,,    从而,

   (II)解:ξ的可取值为0,1,2.

 

所以ξ的分布列为

ξ

0

1

2

P

0.49

0.42

0.09

ξ的数学期望 

19.(Ⅰ)取DC的中点E.

∵ABCD是边长为的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE为求直线PB与平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)连接AC、BD交于点O,因为ABCD是菱形,所以AO⊥BD.

平面, AO平面

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,连接AF,则AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解: (Ⅰ)恒成立,

所以,.

恒成立,

所以 ,

从而有.

,.

 (Ⅱ)令,

    则

所以上是减函数,在上是增函数,

从而当时,.

所以方程只有一个解.

21.证明:由是关于x的方程的两根得

是等差数列。

(2)由(1)知

符合上式,

(3)

  ②

①―②得

22.解:(1)由题意

   (2)由(1)知:(x>0)

h(x)=px2-2x+p.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立。即px2-2x+p≥0。

上恒成立

所以

   (3)证明:①即证 lnxx+1≤0  (x>0),

.

x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;

x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;

x=1为k(x)的极大值点,

∴k(x)≤k(1)=0.

即lnxx+1≤0,∴lnxx-1.

②由①知lnxx-1,又x>0,

 

 

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网