摘要:∴函数的图象关于“拐点 P成中心对称.--11分
网址:http://m.1010jiajiao.com/timu_id_537364[举报]
对于一般的三次函数f(x)=ax3+bx2+cx+d,(a≠0)定义:设f''(x)是函数y=f(x)的导函数y=f'(x)的导数.若f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,现已知:g(x)=(x-a)(x-b)(x-c),请解答下列问题:
(Ⅰ).若y=g(x)是R上的增函数,求证a=b=c;
(Ⅱ)在(Ⅰ).的条件下,求函数y=g(x)的“拐点”A的坐标,并证明函数y=g(x)的图象关于“拐点”A成中心对称.
查看习题详情和答案>>
(Ⅰ).若y=g(x)是R上的增函数,求证a=b=c;
(Ⅱ)在(Ⅰ).的条件下,求函数y=g(x)的“拐点”A的坐标,并证明函数y=g(x)的图象关于“拐点”A成中心对称.
对于一般的三次函数f(x)=ax3+bx2+cx+d,(a≠0)定义:设f''(x)是函数y=f(x)的导函数y=f'(x)的导数.若f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,现已知:g(x)=(x-a)(x-b)(x-c),请解答下列问题:
(Ⅰ).若y=g(x)是R上的增函数,求证a=b=c;
(Ⅱ)在(Ⅰ).的条件下,求函数y=g(x)的“拐点”A的坐标,并证明函数y=g(x)的图象关于“拐点”A成中心对称.
查看习题详情和答案>>
(Ⅰ).若y=g(x)是R上的增函数,求证a=b=c;
(Ⅱ)在(Ⅰ).的条件下,求函数y=g(x)的“拐点”A的坐标,并证明函数y=g(x)的图象关于“拐点”A成中心对称.
已知定义在R上的函数 f(x)的图象关于 (-
,0)成中心对称,且满足f(x)=-f(x+
);f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2007)的值为( )
3 |
4 |
3 |
2 |
查看习题详情和答案>>
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较
与G(
)的大小.
查看习题详情和答案>>
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较
G(x1)+G(x2) |
2 |
x1+x2 |
2 |