网址:http://m.1010jiajiao.com/timu_id_537199[举报]
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有
≤
成立,求实数
的最小值;
(Ⅲ)证明(
).
【解析】(1)解:
的定义域为
由,得
当x变化时,,
的变化情况如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
极小值 |
|
因此,在
处取得最小值,故由题意
,所以
(2)解:当时,取
,有
,故
时不合题意.当
时,令
,即
令,得
①当时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得
,
从而
所以有
综上,,
查看习题详情和答案>>
已知函数,
.
(Ⅰ)若函数依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
(2)不等式 ,即
,即
.
转化为存在实数,使对任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
设,则.
设,则
,因为
,有
.
故在区间
上是减函数。又
故存在,使得
.
当时,有
,当
时,有
.
从而在区间
上递增,在区间
上递减.
又[来源:]
所以当时,恒有
;当
时,恒有
;
故使命题成立的正整数m的最大值为5
查看习题详情和答案>>
![](http://thumb.zyjl.cn/pic1/1898/img/06/71/76/189806717610022576/1.gif)
(1)当n=3时,求捕鱼收益的期望值;
(2)试求n的值,使这次远洋捕鱼收益的期望值达到最大.
查看习题详情和答案>>