摘要:解:(Ⅰ).由题意知.
网址:http://m.1010jiajiao.com/timu_id_534853[举报]
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)证明:易得,于是,所以
(2) ,设平面PCD的法向量,
则,即.不防设,可得.可取平面PAC的法向量于是从而.
所以二面角A-PC-D的正弦值为.
(3)设点E的坐标为(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)证明:由,可得,又由,,故.又,所以.
(2)如图,作于点H,连接DH.由,,可得.
因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值为.
(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
查看习题详情和答案>>
(本小题满分14分)
已知:函数(),.
(1)若函数图象上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数与定义域上的任意实数,若存在常数,使得不等式和都成立,则称直线为函数与的“分界线”。设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看习题详情和答案>>
(本小题满分14分)
已知:函数(),.
(1)若函数图象上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数与定义域上的任意实数,若存在常数,使得不等式和都成立,则称直线为函数与的“分界线”。设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
已知:函数(),.
(1)若函数图象上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数与定义域上的任意实数,若存在常数,使得不等式和都成立,则称直线为函数与的“分界线”。设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当D=(0,
),函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.
查看习题详情和答案>>
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当D=(0,
| ||
3 |