网址:http://m.1010jiajiao.com/timu_id_53335[举报]
已知点
(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若
,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点
为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线
的方程是
,且以点
为圆心的圆
与直线
相切,
求圆
面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线
与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直线
与曲线
相切,且过点
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,则
的斜率
,
∴直线
的方程为:
,又
,
∴
,即
. -----------------7分
∵点
到直线
的距离即为圆
的半径,即
,--------------8分
故圆
的面积为
. --------------------9分
(Ⅲ)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴![]()
,
当且仅当
,即
,
时取等号.
故圆
面积的最小值
.
查看习题详情和答案>>
已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,
的角平分线
的延长线交它的外接圆于点![]()
(Ⅰ)证明:
∽△
;
(Ⅱ)若
的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
查看习题详情和答案>>
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
查看习题详情和答案>>
已知函数![]()
(1)若函数
的图象经过P(3,4)点,求a的值;
(2)比较
大小,并写出比较过程;
(3)若
,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数
的图象经过P(3,4)点,所以
,解得
,因为
,所以
.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由
知,
.,指对数互化得到
,,所以
,解得所以,
或
.
解:⑴∵函数
的图象经过
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵当
时,
;
当
时,
. ……………… 6分
因为,
,![]()
当
时,
在
上为增函数,∵
,∴
.
即
.当
时,
在
上为减函数,
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
查看习题详情和答案>>