网址:http://m.1010jiajiao.com/timu_id_53266[举报]
第一列 | 第二列 | 第三列 | |
第一行 | 3 | 2 | 10 |
第二行 | 14 | 4 | 6 |
第三行 | 18 | 9 | 8 |
(I)求数列{an}和数列{bn}的通项公式;
(II)将数列{an}的项和数列{bn}的项依次从小到大排列得到数列{cn},数列{cn}的前n项和为Sn,试求最大的自然数M,使得当n≤M时,都有Sn≤2012.
(Ⅲ)若对任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求实数λ的取值范围.
已知是公差为d的等差数列,是公比为q的等比数列
(Ⅰ)若 ,是否存在,有?请说明理由;
(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;
(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
【解析】第一问中,由得,整理后,可得、,为整数不存在、,使等式成立。
(2)中当时,则
即,其中是大于等于的整数
反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)中设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
结合二项式定理得到结论。
解(1)由得,整理后,可得、,为整数不存在、,使等式成立。
(2)当时,则即,其中是大于等于的整数反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
由,得
当为奇数时,此时,一定有和使上式一定成立。当为奇数时,命题都成立
查看习题详情和答案>>
如果一个实数数列满足条件:(为常数,),则称这一数列 “伪等差数列”, 称为“伪公差”。给出下列关于某个伪等差数列的结论:
①对于任意的首项,若<0,则这一数列必为有穷数列;
②当>0, >0时,这一数列必为单调递增数列;
③这一数列可以是一个周期数列;
④若这一数列的首项为1,伪公差为3,可以是这一数列中的一项;
⑤若这一数列的首项为0,第三项为-1,则这一数列的伪公差可以是。
其中正确的结论是________________.
查看习题详情和答案>>
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。
(1)到下午6时最后一辆车行驶了多长时间?
(2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?
【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆
则第15辆车在小时,最后一辆车出发时间为:小时
第15辆车行驶时间为:小时(1时40分)
第二问中,设每辆车行驶的时间为:,由题意得到
是以为首项,为公差的等差数列
则行驶的总时间为:
则行驶的总里程为:运用等差数列求和得到。
解:(1)第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆
则第15辆车在小时,最后一辆车出发时间为:小时
第15辆车行驶时间为:小时(1时40分) ……5分
(2)设每辆车行驶的时间为:,由题意得到
是以为首项,为公差的等差数列
则行驶的总时间为: ……10分
则行驶的总里程为:
查看习题详情和答案>>
第一列 | 第二列 | 第三列 | |
第一行 | 3 | 2 | 10 |
第二行 | 14 | 4 | 6 |
第三行 | 18 | 9 | 8 |
(I)求数列{an}和数列{bn}的通项公式;
(II)将数列{an}的项和数列{bn}的项依次从小到大排列得到数列{cn},数列{cn}的前n项和为Sn,试求最大的自然数M,使得当n≤M时,都有Sn≤2012.
(Ⅲ)若对任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求实数λ的取值范围.
查看习题详情和答案>>