ÌâÄ¿ÄÚÈÝ

ÒÑ֪ijÊýÁеÄÇ°ÈýÏî·Ö±ðÊÇϱíµÚÒ»¡¢¶þ¡¢ÈýÐÐÖеÄijһ¸öÊý£¬ÇÒÇ°ÈýÏîÖÐÈκÎÁ½¸öÊý²»ÔÚϱíµÄͬһÁУ®
µÚÒ»ÁÐ µÚ¶þÁÐ µÚÈýÁÐ
µÚÒ»ÐÐ 3 2 10
µÚ¶þÐÐ 14 4 6
µÚÈýÐÐ 18 9 8
Èô´ËÊýÁÐÊǵȲîÊýÁУ¬¼Ç×÷{an}£¬Èô´ËÊýÁÐÊǵȱÈÊýÁУ¬¼Ç×÷{bn}£®
£¨I£©ÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©½«ÊýÁÐ{an}µÄÏîºÍÊýÁÐ{bn}µÄÏîÒÀ´Î´ÓСµ½´óÅÅÁеõ½ÊýÁÐ{cn}£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn£¬ÊÔÇó×î´óµÄ×ÔÈ»ÊýM£¬Ê¹µÃµ±n¡ÜMʱ£¬¶¼ÓÐSn¡Ü2012£®
£¨¢ó£©Èô¶ÔÈÎÒân¡ÊN£¬ÓÐan+1bn+¦Ëbnbn+1¡Ýanbn+1³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨I£©ÓÉÌõ¼þµÃa1=3£¬a2=6£¬a3=9£¬b1=2£¬b2=6£¬b3=18£¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©µ±n¡Ý2ʱ£¬bn=2•3n-1=3•£¨2•3n-2£©=a2•3n-2£¬¶øµÈ²îÊýÁÐ{an}µÄ¹«²îd=3£¾0ÊǵÝÔöµÄµÈ²îÊýÁУ¬¼ÆËãS39£¬S40µÄÖµ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨¢ó£©ÓÉan+1bn+¦Ëbnbn+1¡Ýanbn+1£¬·ÖÀë²ÎÊý¦Ë¡Ý
an
bn
-
an+1
bn+1
£¬È·¶¨ÓұߵÄ×î´óÖµ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨I£©ÓÉÌõ¼þµÃa1=3£¬a2=6£¬a3=9£¬ËùÒԵȲîÊýÁÐ{an}µÄ¹«²îd=3£¬Í¨Ïʽan=3n£»
b1=2£¬b2=6£¬b3=18£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±Èq=3£¬Í¨Ïʽbn=2•3n-1£¬n¡ÊN*£®
£¨II£©µ±n¡Ý2ʱ£¬bn=2•3n-1£¬¶øµÈ²îÊýÁÐ{an}µÄ¹«²îd=3£¾0ÊǵÝÔöµÄµÈ²îÊýÁУ®
a35=105£¬a36=108£»b4=54£¬b5=162£®
¡àS39=a1+a2+¡­+a35+b1+b2+b3+b4=1970£¬S40=a1+a2+¡­+a36+b1+b2+b3+b4=2078£¬
¹ÊM=39£®
£¨¢ó£©ÓÉan+1bn+¦Ëbnbn+1¡Ýanbn+1¿ÉµÃ¦Ë¡Ý
an
bn
-
an+1
bn+1
£®
an
bn
-
an+1
bn+1
=
3n
2•3n-1
-
3n+3
2•3n
=
2n-1
2•3n-1
£¨n¡Ý1£¬n¡ÊN*£©
¶øµ±n¡Ý1ʱ£¬
2(n+1)-1
2•3(n+1)-1
-
2n-1
2•3n-1
=-
4(n-1)
2•3n
¡Ü0£¬ÊýÁÐ{
2n-1
2•3n-1
}ÊǵݼõÊýÁУ¬
¡àµ±n=1ʱ£¬
an
bn
-
an+1
bn+1
È¡µÃ×î´óÏîΪ
1
2
£®
¡à¦Ë¡Ý
1
2
£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÊýÁÐÇóºÍÎÊÌ⣬¿¼²éºã³ÉÁ¢ÎÊÌ⣬ȷ¶¨ÊýÁеÄͨÏîÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø