ÌâÄ¿ÄÚÈÝ
ÒÑ֪ijÊýÁеÄÇ°ÈýÏî·Ö±ðÊÇϱíµÚÒ»¡¢¶þ¡¢ÈýÐÐÖеÄijһ¸öÊý£¬ÇÒÇ°ÈýÏîÖÐÈκÎÁ½¸öÊý²»ÔÚϱíµÄͬһÁУ®
Èô´ËÊýÁÐÊǵȲîÊýÁУ¬¼Ç×÷{an}£¬Èô´ËÊýÁÐÊǵȱÈÊýÁУ¬¼Ç×÷{bn}£®
£¨I£©ÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©½«ÊýÁÐ{an}µÄÏîºÍÊýÁÐ{bn}µÄÏîÒÀ´Î´ÓСµ½´óÅÅÁеõ½ÊýÁÐ{cn}£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn£¬ÊÔÇó×î´óµÄ×ÔÈ»ÊýM£¬Ê¹µÃµ±n¡ÜMʱ£¬¶¼ÓÐSn¡Ü2012£®
£¨¢ó£©Èô¶ÔÈÎÒân¡ÊN£¬ÓÐan+1bn+¦Ëbnbn+1¡Ýanbn+1³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
µÚÒ»ÁÐ | µÚ¶þÁÐ | µÚÈýÁÐ | |
µÚÒ»ÐÐ | 3 | 2 | 10 |
µÚ¶þÐÐ | 14 | 4 | 6 |
µÚÈýÐÐ | 18 | 9 | 8 |
£¨I£©ÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©½«ÊýÁÐ{an}µÄÏîºÍÊýÁÐ{bn}µÄÏîÒÀ´Î´ÓСµ½´óÅÅÁеõ½ÊýÁÐ{cn}£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn£¬ÊÔÇó×î´óµÄ×ÔÈ»ÊýM£¬Ê¹µÃµ±n¡ÜMʱ£¬¶¼ÓÐSn¡Ü2012£®
£¨¢ó£©Èô¶ÔÈÎÒân¡ÊN£¬ÓÐan+1bn+¦Ëbnbn+1¡Ýanbn+1³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨I£©ÓÉÌõ¼þµÃa1=3£¬a2=6£¬a3=9£¬b1=2£¬b2=6£¬b3=18£¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©µ±n¡Ý2ʱ£¬bn=2•3n-1=3•£¨2•3n-2£©=a2•3n-2£¬¶øµÈ²îÊýÁÐ{an}µÄ¹«²îd=3£¾0ÊǵÝÔöµÄµÈ²îÊýÁУ¬¼ÆËãS39£¬S40µÄÖµ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨¢ó£©ÓÉan+1bn+¦Ëbnbn+1¡Ýanbn+1£¬·ÖÀë²ÎÊý¦Ë¡Ý
-
£¬È·¶¨ÓұߵÄ×î´óÖµ£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨II£©µ±n¡Ý2ʱ£¬bn=2•3n-1=3•£¨2•3n-2£©=a2•3n-2£¬¶øµÈ²îÊýÁÐ{an}µÄ¹«²îd=3£¾0ÊǵÝÔöµÄµÈ²îÊýÁУ¬¼ÆËãS39£¬S40µÄÖµ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨¢ó£©ÓÉan+1bn+¦Ëbnbn+1¡Ýanbn+1£¬·ÖÀë²ÎÊý¦Ë¡Ý
an |
bn |
an+1 |
bn+1 |
½â´ð£º½â£º£¨I£©ÓÉÌõ¼þµÃa1=3£¬a2=6£¬a3=9£¬ËùÒԵȲîÊýÁÐ{an}µÄ¹«²îd=3£¬Í¨Ïʽan=3n£»
b1=2£¬b2=6£¬b3=18£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±Èq=3£¬Í¨Ïʽbn=2•3n-1£¬n¡ÊN*£®
£¨II£©µ±n¡Ý2ʱ£¬bn=2•3n-1£¬¶øµÈ²îÊýÁÐ{an}µÄ¹«²îd=3£¾0ÊǵÝÔöµÄµÈ²îÊýÁУ®
a35=105£¬a36=108£»b4=54£¬b5=162£®
¡àS39=a1+a2+¡+a35+b1+b2+b3+b4=1970£¬S40=a1+a2+¡+a36+b1+b2+b3+b4=2078£¬
¹ÊM=39£®
£¨¢ó£©ÓÉan+1bn+¦Ëbnbn+1¡Ýanbn+1¿ÉµÃ¦Ë¡Ý
-
£®
-
=
-
=
£¨n¡Ý1£¬n¡ÊN*£©
¶øµ±n¡Ý1ʱ£¬
-
=-
¡Ü0£¬ÊýÁÐ{
}ÊǵݼõÊýÁУ¬
¡àµ±n=1ʱ£¬
-
È¡µÃ×î´óÏîΪ
£®
¡à¦Ë¡Ý
£®
b1=2£¬b2=6£¬b3=18£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±Èq=3£¬Í¨Ïʽbn=2•3n-1£¬n¡ÊN*£®
£¨II£©µ±n¡Ý2ʱ£¬bn=2•3n-1£¬¶øµÈ²îÊýÁÐ{an}µÄ¹«²îd=3£¾0ÊǵÝÔöµÄµÈ²îÊýÁУ®
a35=105£¬a36=108£»b4=54£¬b5=162£®
¡àS39=a1+a2+¡+a35+b1+b2+b3+b4=1970£¬S40=a1+a2+¡+a36+b1+b2+b3+b4=2078£¬
¹ÊM=39£®
£¨¢ó£©ÓÉan+1bn+¦Ëbnbn+1¡Ýanbn+1¿ÉµÃ¦Ë¡Ý
an |
bn |
an+1 |
bn+1 |
an |
bn |
an+1 |
bn+1 |
3n |
2•3n-1 |
3n+3 |
2•3n |
2n-1 |
2•3n-1 |
¶øµ±n¡Ý1ʱ£¬
2(n+1)-1 |
2•3(n+1)-1 |
2n-1 |
2•3n-1 |
4(n-1) |
2•3n |
2n-1 |
2•3n-1 |
¡àµ±n=1ʱ£¬
an |
bn |
an+1 |
bn+1 |
1 |
2 |
¡à¦Ë¡Ý
1 |
2 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÊýÁÐÇóºÍÎÊÌ⣬¿¼²éºã³ÉÁ¢ÎÊÌ⣬ȷ¶¨ÊýÁеÄͨÏîÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑ֪ijÊýÁеÄÇ°ÈýÏî·Ö±ðÊÇϱíµÚÒ»¡¢¶þ¡¢ÈýÐÐÖеÄijһ¸öÊý£¬ÇÒÇ°ÈýÏîÖÐÈκÎÁ½¸öÊý²»ÔÚϱíµÄͬһÁУ®
Èô´ËÊýÁÐÊǵȲîÊýÁУ¬¼Ç×÷{an}£¬Èô´ËÊýÁÐÊǵȱÈÊýÁУ¬¼Ç×÷{bn}£®
£¨I£©ÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©½«ÊýÁÐ{an}µÄÏîºÍÊýÁÐ{bn}µÄÏîÒÀ´Î´ÓСµ½´óÅÅÁеõ½ÊýÁÐ{cn}£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn£¬ÊÔÇó×î´óµÄ×ÔÈ»ÊýM£¬Ê¹µÃµ±n¡ÜMʱ£¬¶¼ÓÐSn¡Ü2012£®
£¨¢ó£©Èô¶ÔÈÎÒân¡ÊN£¬ÓÐan+1bn+¦Ëbnbn+1¡Ýanbn+1³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
µÚÒ»ÁÐ | µÚ¶þÁÐ | µÚÈýÁÐ | |
µÚÒ»ÐÐ | 3 | 2 | 10 |
µÚ¶þÐÐ | 14 | 4 | 6 |
µÚÈýÐÐ | 18 | 9 | 8 |
£¨I£©ÇóÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©½«ÊýÁÐ{an}µÄÏîºÍÊýÁÐ{bn}µÄÏîÒÀ´Î´ÓСµ½´óÅÅÁеõ½ÊýÁÐ{cn}£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn£¬ÊÔÇó×î´óµÄ×ÔÈ»ÊýM£¬Ê¹µÃµ±n¡ÜMʱ£¬¶¼ÓÐSn¡Ü2012£®
£¨¢ó£©Èô¶ÔÈÎÒân¡ÊN£¬ÓÐan+1bn+¦Ëbnbn+1¡Ýanbn+1³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®