摘要:的结论下.设函数 .求函数 的最小值,
网址:http://m.1010jiajiao.com/timu_id_531619[举报]
函数f(x)=x3+
ax2+x+1(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
查看习题详情和答案>>
1 | 2 |
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
函数f(x)=x3+
ax2+x+1(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
查看习题详情和答案>>
1 |
2 |
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
已知函数f(x)=
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程). 查看习题详情和答案>>
1 | 3 |
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程). 查看习题详情和答案>>