摘要:(Ⅱ)若H为PD上的动点.EH与平面PAD所成最大角的正切值为.求二面角E―AF―C的余弦值.(Ⅰ)证明:由四边形ABCD为菱形.∠ABC=60°.可得△ABC为正三角形.因为 E为BC的中点.所以AE⊥BC. 又 BC∥AD.因此AE⊥AD.
网址:http://m.1010jiajiao.com/timu_id_531207[举报]
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
查看习题详情和答案>>
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.H为PD上的动点,EH与平面PAD所成最大角的正切值为
.
(1)证明:AE⊥PD;
(3)求异面直线PB与AC所成的角的余弦值;
(4)若AB=2,求三棱锥P-AEF的体积. 查看习题详情和答案>>
| ||
2 |
(1)证明:AE⊥PD;
(3)求异面直线PB与AC所成的角的余弦值;
(4)若AB=2,求三棱锥P-AEF的体积. 查看习题详情和答案>>
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.H为PD上的动点,EH与平面PAD所成最大角的正切值为.
(1)证明:AE⊥PD;
(3)求异面直线PB与AC所成的角的余弦值;
(4)若AB=2,求三棱锥P-AEF的体积.
查看习题详情和答案>>
(1)证明:AE⊥PD;
(3)求异面直线PB与AC所成的角的余弦值;
(4)若AB=2,求三棱锥P-AEF的体积.
查看习题详情和答案>>