网址:http://m.1010jiajiao.com/timu_id_530562[举报]
已知集合
A=,
B=
.
(1)若,求A∩B,
;
(2)若A,求实数m的取值范围。
【解析】第一问首先翻译A,B为最简集合,即为
A=
B=
然后利用当m=-1时,则有 B=
,
第二问,因为A,
所以满足A
得到结论。
解:因为A=
,
B=
当m=-1时,则有 B=
,
(2) 因为A,
所以满足A
故
查看习题详情和答案>>
若直线l经过点P1(x1,y1)及点P(x,y)且斜率为k,则k与P1、P的坐标之间的关系是________,即为________.这个方程是由直线l上一点及直线的斜率确定的,所以叫做直线方程的________.当直线l的倾斜角为________时,直线没有斜率,这时直线l与x轴________,它的方程为________.
查看习题详情和答案>>![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124541205564567/SYS201310251245412055645015_ST/0.png)
(1)若6=b(mod2)且0<b<6,则b的所有可能取值为 ;
(2)若a=10(modm)(a>10,m>1),满足条件的a由小到大依次记为a1,a2…an,…,当数列{an}前m-1项的和为60(m-1)时,则m= . 查看习题详情和答案>>
a-b | m |
(1)若6=b(mod2)且0<b<6,则b的所有可能取值为
(2)若a=10(modm)(a>10,m>1),满足条件的a由小到大依次记为a1,a2…an,…,当数列{an}前m-1项的和为60(m-1)时,则m=
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
当时
单调递减;当
时
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,的取值集合为
.
(Ⅱ)由题意知,令
则
令,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即
从而,
又
所以因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>