摘要:(2)设切线的方程为:
网址:http://m.1010jiajiao.com/timu_id_530444[举报]
设圆C1的方程为(x+2)2+(y-3m-2)2=4m2,直线l的方程为y=x+m+2.
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程. 查看习题详情和答案>>
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程. 查看习题详情和答案>>
设圆C1的方程为(x+2)2+(y-3m-2)2=4m2,直线l的方程为y=x+m+2.
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.
查看习题详情和答案>>
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.
查看习题详情和答案>>
设圆C1的方程为(x+2)2+(y-3m-2)2=4m2,直线l的方程为y=x+m+2.
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.
查看习题详情和答案>>
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.
查看习题详情和答案>>