摘要:所以存在.使以为直径的圆与抛物线有相异于的交点.
网址:http://m.1010jiajiao.com/timu_id_530429[举报]
已知点和抛物线的焦点关于轴对称,点是以点为圆心,4为半径的上任意一点,线段的垂直平分线与线段交于点,设点的轨迹为曲线,
求抛物线和曲线的方程;
是否存在直线,使得直线分别与抛物线及曲线均只有一个公共点,若存在,求出所有这样的直线的方程,若不存在,请说明理由.
查看习题详情和答案>>
如图所示,F是抛物线y2=2px(p>0)的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点,|PA|+|PF|的最小值为8.
(1)求抛物线方程;
(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由. 查看习题详情和答案>>
(1)求抛物线方程;
(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由. 查看习题详情和答案>>