摘要:(1)当时.则.此时.点适合题意.
网址:http://m.1010jiajiao.com/timu_id_530316[举报]
在中,满足
,
是
边上的一点.
(Ⅰ)若,求向量
与向量
夹角的正弦值;
(Ⅱ)若,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量与向量
的夹角为
,则
令=
,得
,又
,则
为所求
第二问因为,
=m所以
,
(1)当时,则
=
(2)当时,则
=
第三问中,解:设,因为
,
;
所以即
于是
得
从而
运用三角函数求解。
(Ⅰ)解:设向量与向量
的夹角为
,则
令=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为,
=m所以
,
(1)当时,则
=
;-2分
(2)当时,则
=
;--2分
(Ⅲ)解:设,因为
,
;
所以即
于是
得
从而---2分
==
=…………………………………2分
令,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,
查看习题详情和答案>>
如图所示的曲线是由部分抛物线
和曲线
“合成”的,直线
与曲线
相切于点
,与曲线
相切于点
,记点
的横坐标为
,其中
.
(1)当时,求
的值和点
的坐标;
(2)当实数取何值时,
?并求出此时直线
的方程.
查看习题详情和答案>>