网址:http://m.1010jiajiao.com/timu_id_528715[举报]
如图,,,…,,…是曲线上的点,,,…,,…是轴正半轴上的点,且,,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).
(1)写出、和之间的等量关系,以及、和之间的等量关系;
(2)求证:();
(3)设,对所有,恒成立,求实数的取值范围.
【解析】第一问利用有,得到
第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及,
得
第三问
.………………………2分
因为函数在区间上单调递增,所以当时,最大为,即
解:(1)依题意,有,,………………4分
(2)证明:①当时,可求得,命题成立; ……………2分
②假设当时,命题成立,即有,……………………1分
则当时,由归纳假设及,
得.
即
解得(不合题意,舍去)
即当时,命题成立. …………………………………………4分
综上所述,对所有,. ……………………………1分
(3)
.………………………2分
因为函数在区间上单调递增,所以当时,最大为,即
.……………2分
由题意,有. 所以,
查看习题详情和答案>>
已知函数 R).
(Ⅰ)若 ,求曲线 在点 处的的切线方程;
(Ⅱ)若 对任意 恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,.
因为切点为(), 则,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即即可。
Ⅰ)当时,.
,
因为切点为(), 则,
所以在点()处的曲线的切线方程为:. ……5分
(Ⅱ)解法一:由题意得,即. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以恒成立,
故在上单调递增, ……12分
要使恒成立,则,解得.……15分
解法二: ……7分
(1)当时,在上恒成立,
故在上单调递增,
即. ……10分
(2)当时,令,对称轴,
则在上单调递增,又
① 当,即时,在上恒成立,
所以在单调递增,
即,不合题意,舍去
②当时,, 不合题意,舍去 14分
综上所述:
查看习题详情和答案>>
设椭圆 :()的一个顶点为,,分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线 与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。
解:(1)椭圆的顶点为,即
,解得, 椭圆的标准方程为 --------4分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线为,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直线的方程为或
即或
查看习题详情和答案>>
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有≤成立,求实数的最小值;
(Ⅲ)证明().
【解析】(1)解: 的定义域为
由,得
当x变化时,,的变化情况如下表:
x |
|||
- |
0 |
+ |
|
极小值 |
因此,在处取得最小值,故由题意,所以
(2)解:当时,取,有,故时不合题意.当时,令,即
令,得
①当时,,在上恒成立。因此在上单调递减.从而对于任意的,总有,即在上恒成立,故符合题意.
②当时,,对于,,故在上单调递增.因此当取时,,即不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得 ,
从而
所以有
综上,,
查看习题详情和答案>>
已知函数.()
(1)若在区间上单调递增,求实数的取值范围;
(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。
解:(1)在区间上单调递增,
则在区间上恒成立. …………3分
即,而当时,,故. …………5分
所以. …………6分
(2)令,定义域为.
在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.
∵ …………9分
① 若,令,得极值点,,
当,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;
当,即时,同理可知,在区间上递增,
有,也不合题意; …………11分
② 若,则有,此时在区间上恒有,从而在区间上是减函数;
要使在此区间上恒成立,只须满足,
由此求得的范围是. …………13分
综合①②可知,当时,函数的图象恒在直线下方.
查看习题详情和答案>>