网址:http://m.1010jiajiao.com/timu_id_525016[举报]
一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中。只有一项是符合题目要求的。)
B、D、C、A B、A、D、B
二、填空题:(本大题共7小题,每小题5分,满分30分。其中13~15题是选做题,考生只能选做两题,三题全答的,只计算前两题得分。)
9、; 10、800; 11、①③④; 12、,1005;
13、 14、; 15、
三、解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤。)
16、(1)证明:∵PA⊥底面ABCD,MN底面ABCD
∴MN⊥PA 又MN⊥AD 且PA∩AD = A
∴MN⊥平面PAD ………………………………………………4分
MN平面PMN ∴平面PMN⊥平面PAD ……………………6分
(2)∵BC⊥BA BC⊥PA PA∩BA = A ∴BC⊥平面PBA
∴∠BPC为直线PC与平面PBA所成的角
即……………………………………………10分
在中,
∴ ………………12分
17、解:(1)由题意可知、、、、这5个点相邻两点间的弧长为
的可能的取值有,2,3,4
,
,
于是=×+2×+3×+4×=2。…………………6分
(2)连结MP,取线段MP的中点D,则OD⊥MP,易求得OD=,
当S点在线段MP上时,三角形SAB的面积等于××8 =,
所以只有当S点落在阴影部分时,面积才能大于,
S阴影 = S扇形OMP - S△OMP = ××-×= 4-8,
所以由几何概型公式的三角形SAB的面积大于的概
率P =。 …………………12分
18、解:(1)证明:在中,由题设,AD = 2可得
,于是。在矩形中,.
又,所以平面.…………………………………….4分
(2)解:由题设,,所以(或其补角)是异面直线与所成的角.
在中,由余弦定理得
由(1)知平面,平面,
所以,因而,于是是直角三角形,
故………………………….8分
(3)解:过点P做于H,过点H做于E,连结PE
平面,平面,.又,
因而平面,平面,
又,,平面,又平面
,从而是二面角的平面角…………….12分
由题设可得,
于是在中,….14分
19、解: (1)依题意知,数列是一个以500为首项,-20为公差的等差数列,所以
则时不等式①成立 …………………13分
答:从今年起该企业至少经过4年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润……………………………………………….……14分
20、(1)连接, E、F分别为、DB的中点, EF//,
又平面,EF平面,
EF//平面………………………………………………………4分
(2)正方体中,平面,平面
则,正方形中,,
又= B,AB、平面,
则平面,平面,所以,又EF//,
所以EF. ……………………………………………………………9分
(3)正方体的棱长为2,、分别为、DB的中点。
……………………………..………………14分
21、解:(1)…………………………………2分
在上是增函数,在上恒成立
即…………………………………………4分
(当且仅当时取等号)
所以 ……………………..………………6分
(2)设,则
当时,在区间上是增函数
所以的最小值为 ……………………………………………10分
当时,
因为函数在区间上是增函数,在区间上也是增函数,
又在上为连续函数,所以在上为增函数,
所以的最小值为
……………………………………14分
1 | 2 |
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
1 |
2 |
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+)2+,
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
查看习题详情和答案>>
1 | 3 |
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程). 查看习题详情和答案>>