摘要:[范例2] 设曲线C的方程是.将C沿轴正向分别平移单位长度后得曲线,(1)写出曲线的方程,(2)证明曲线与曲线关于点对称,(3)如果曲线与曲线有且仅有一个公共点.证明.
网址:http://m.1010jiajiao.com/timu_id_524483[举报]
设抛物线:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于
轴的焦点为E,圆F的半径为
,
则|FE|=,
=
,E是BD的中点,
(Ⅰ) ∵,∴
=
,|BD|=
,
设A(,
),根据抛物线定义得,|FA|=
,
∵的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=, ∴圆F的方程为:
;
(Ⅱ) 解析1∵,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知,∴
,∴
的斜率为
或-
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
设直线的方程为:
,代入
得,
,
∵与
只有一个公共点,
∴
=
,∴
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到,
距离的比值为3.
解析2由对称性设,则
点关于点
对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
查看习题详情和答案>>
已知两点F1(-2,0),F2(2,0),曲线C1上的动点P满足|PF1|+|PF2|=
|F1F2|.
(1)求曲线C1的方程;
(2)设曲线C2的方程为|x|+|y|=m(m>0),当C1和C2有四个不同的交点时,求实数m的取值范围.
查看习题详情和答案>>
2 |
(1)求曲线C1的方程;
(2)设曲线C2的方程为|x|+|y|=m(m>0),当C1和C2有四个不同的交点时,求实数m的取值范围.
已知曲线的极坐标方程为ρ=4cos2
-2,则其直角坐标下的方程是( )
θ |
2 |
A、x2+(y+1)2=1 |
B、(x+1)2+y2=1 |
C、(x-1)2+y2=1 |
D、x2+(y-1)2=1 |