摘要:解:如图所示,在△OAB中.
网址:http://m.1010jiajiao.com/timu_id_51984[举报]
如图,已知圆锥体的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
(1)求圆锥体的体积;
(2)异面直线与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,得
,故
从而体积.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
则,所以异面直线SO与P成角的大arctan
解:(1)由题意,得
,
故从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
则,所以异面直线SO与P成角的大arctan
查看习题详情和答案>>