摘要:解法二:将极坐标方程化成直角坐标方程得(x-)2+y2=与x2+(y-)2=,
网址:http://m.1010jiajiao.com/timu_id_51969[举报]
⊙O1和⊙O2的极坐标方程分别为,.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式,,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I),,由得.所以.
即为⊙O1的直角坐标方程.
同理为⊙O2的直角坐标方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
查看习题详情和答案>>
(1)已知某圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程.
(2)已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1=
,且矩阵M对应的变换将点(-1,2)变换成
(-2,4).求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系. 查看习题详情和答案>>
(2)已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1=
|
(-2,4).求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系. 查看习题详情和答案>>
(1)已知某圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程.
(2)已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1=,且矩阵M对应的变换将点(-1,2)变换成
(-2,4).求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系.
查看习题详情和答案>>
(2)已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1=,且矩阵M对应的变换将点(-1,2)变换成
(-2,4).求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系.
查看习题详情和答案>>