摘要:此时在上是减函数.在上是增函数.
网址:http://m.1010jiajiao.com/timu_id_516817[举报]
若函数f(x)是定义在[-4,4]上的奇函数,且在[-4,0)上单调递增,且此时最小值为-7,则f(x)在(0,4]上
[ ]
A.单调递减,最小值7
B.单调递增,最小值7
C.单调递增,最大值7
D.单调递增,最小值-7
查看习题详情和答案>>
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
(x>0)在区间(0,2)上递减,函数f(x)=x+
(x>0)在区间 上递增;
(2)函数f(x)=x+
(x>0),当x= 时,y最小= ;
(3)函数f(x)=x+
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)函数f(x)=x+
4 |
x |
4 |
x |
(2)函数f(x)=x+
4 |
x |
(3)函数f(x)=x+
4 |
x |
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
,x∈(0,+∞)在区间(0,2)上递减;
(1)函数f(x)=x+
,x∈(0,+∞)在区间 上递增.当x= 时,y最小= .
(2)证明:函数f(x)=x+
(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=x+
(x<0)有最值吗?如有,是最大值还是最小值?此时x为何值?(直接回答结果,不需证明).
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
函数f(x)=x+
4 |
x |
(1)函数f(x)=x+
4 |
x |
(2)证明:函数f(x)=x+
4 |
x |
(3)思考:函数f(x)=x+
4 |
x |
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数f(x)=x+
,(x>0)在区间(0,2)上递减,则在
(2)当x=
,(x>0)的最小值为
(3)试用定义证明f(x)=x+
,(x>0)在区间(0,2)上递减;
(4)函数f(x)=x+
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)若函数f(x)=x+
4 |
x |
[2,+∞)
[2,+∞)
上递增;(2)当x=
2
2
时,f(x)=x+4 |
x |
4
4
;(3)试用定义证明f(x)=x+
4 |
x |
(4)函数f(x)=x+
4 |
x |
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
(x>0)在区间
(x>0)在区间
(2)函数f(x)=x+
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 4.8 | 7.57 | … |
(1)函数f(x)=x+
4 |
x |
(0,2)
(0,2)
上递减;并利用单调性定义证明.函数f(x)=x+4 |
x |
(2,+∞)
(2,+∞)
上递增.当x=2
2
时,y最小=4
4
.(2)函数f(x)=x+
4 |
x |