摘要:A.T=2π.一条对称轴方程为 B.T=2π.一条对称轴方程为
网址:http://m.1010jiajiao.com/timu_id_516282[举报]
对称轴为坐标轴,顶点在坐标原点的抛物线C经过两点A(a,2a)、B(4a,4a),(其中a为正常数).
(1)求抛物线C的方程;
(2)设动点T(m,0)(m>a),直线AT、BT与抛物线C的另一个交点分别为A1、B1,当m变化时,记所有直线A1B1组成的集合为M,求证:集合M中的任意两条直线都相交且交点都不在坐标轴上.
查看习题详情和答案>>
(1)求抛物线C的方程;
(2)设动点T(m,0)(m>a),直线AT、BT与抛物线C的另一个交点分别为A1、B1,当m变化时,记所有直线A1B1组成的集合为M,求证:集合M中的任意两条直线都相交且交点都不在坐标轴上.
对称轴为坐标轴,顶点在坐标原点的抛物线C经过两点A(a,2a)、B(4a,4a),(其中a为正常数).
(1)求抛物线C的方程;
(2)设动点T(m,0)(m>a),直线AT、BT与抛物线C的另一个交点分别为A1、B1,当m变化时,记所有直线A1B1组成的集合为M,求证:集合M中的任意两条直线都相交且交点都不在坐标轴上.
查看习题详情和答案>>
对称轴为坐标轴,顶点在坐标原点的抛物线C经过两点A(a,2a)、B(4a,4a),(其中a为正常数).
(1)求抛物线C的方程;
(2)设动点T(m,0)(m>a),直线AT、BT与抛物线C的另一个交点分别为A1、B1,当m变化时,记所有直线A1B1组成的集合为M,求证:集合M中的任意两条直线都相交且交点都不在坐标轴上.
查看习题详情和答案>>
(1)求抛物线C的方程;
(2)设动点T(m,0)(m>a),直线AT、BT与抛物线C的另一个交点分别为A1、B1,当m变化时,记所有直线A1B1组成的集合为M,求证:集合M中的任意两条直线都相交且交点都不在坐标轴上.
查看习题详情和答案>>