摘要:由.与=共线.得
网址:http://m.1010jiajiao.com/timu_id_512775[举报]
(本小题16分)已知点A(-1, 0)、B(1, 0),△ABC的周长为2+2.记动点C的轨迹
为曲线W.
(1)直接写出W的方程(不写过程);
(2)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点P和Q,是否存在常数k,使得向量与向量
共线?如果存在,求出k的值;如果不存在,请说明理由.
(3)设W的左右焦点分别为F1、 F2,点R在直线l:x-y+8=0上.当∠F1RF2取最大值时,求
的值.
设抛物线:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于
轴的焦点为E,圆F的半径为
,
则|FE|=,
=
,E是BD的中点,
(Ⅰ) ∵,∴
=
,|BD|=
,
设A(,
),根据抛物线定义得,|FA|=
,
∵的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=, ∴圆F的方程为:
;
(Ⅱ) 解析1∵,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知,∴
,∴
的斜率为
或-
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
设直线的方程为:
,代入
得,
,
∵与
只有一个公共点,
∴
=
,∴
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到,
距离的比值为3.
解析2由对称性设,则
点关于点
对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
查看习题详情和答案>>