网址:http://m.1010jiajiao.com/timu_id_505040[举报]
1. 2. 1 3. 4 4. 5. 1, 6. 90° 7. 13
8. 9. 10. 4 11. y=2x 12. 9
13. D 14. B 15. D 16. C
17. 解: (1)y=2sin(2x-),
(2) ……
∴函数y的值域为[-1,2]
……………
18. (1)解 如图所示,在平面ABCD内,过C作CP∥DE,交直线AD于P,则∠A′CP(或补角)为异面直线A′C与DE所成的角
在△A′CP中,
易得A′C=a,CP=DE=a,A′P=a
由余弦定理得cosA′CP=
(2)解 ∵∠ADE=∠ADF,∴AD在平面B′EDF内的射影在∠EDF的平分线上 如下图所示
又∵B′EDF为菱形,∴DB′为∠EDF的平分线,
故直线AD与平面B′EDF所成的角为∠ADB′
在Rt△B′AD中,AD=a,AB′=a,B′D=a
则cosADB′=
∵∠ADE=∠ADF,∴AD在平面B′EDF内的射影在∠EDF的平分线上 如下图所示
又∵B′EDF为菱形,∴DB′为∠EDF的平分线,
故直线AD与平面B′EDF所成的角为∠ADB′,
如图建立坐标系,则
,
19. (1)解为等差数列,
……………………………………………………2分
解得 ……………………………4分
………………………………………………………………5分
……………………………………………………………6分
(2) ………………………………………………6分
…………8分
因,知上单减,在上单增,
又,
而 …………………………………………10分
∴当n = 5时,取最大值为 ………………12分
20. 解:(1)∵,∴,即,
∵,∴
(2),
当,
即时,
当时,∵,∴这样的不存在。
当,即时,,这样的不存在。
综上得, .
21. 解:(1)Q为PN的中点且GQ⊥PN
GQ为PN的中垂线|PG|=|GN|
∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长,半焦距,∴短半轴长b=2,∴点G的轨迹方程是
(2)因为,所以四边形OASB为平行四边形
若存在l使得||=||,则四边形OASB为矩形
若l的斜率不存在,直线l的方程为x=2,由
矛盾,故l的斜率存在.
设l的方程为
①
②
把①、②代入
∴存在直线使得四边形OASB的对角线相等.
π |
2 |
求(1)函数解析式,并利用“五点法”画出函数的图象;
(2)函数的最大值、以及达到最大值时x的集合;
(3)该函数图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩得到?
(4)当x∈(0,
3π |
2 |
(1)若函数y=f(x),x∈R是周期函数,写出符合条件a的值;
(2)求n≤x≤n+1(n≥0,n∈Z)时,求y=f(x)的表达式y=fn(x);
(3)若函数y=f(x)在[0,+∞)上的值域是闭区间,求a的取值范围.
查看习题详情和答案>>