摘要:1. 2. 3. 4.68 5.0
网址:http://m.1010jiajiao.com/timu_id_497694[举报]
已知某校5个学生的数学和物理成绩如下表
(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
(3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
参考数据和公式:
=bx+a,其中b=
,a=
-b
;
xiyi=23190,
=24750,
残差和公式为:
(yi-
i).
查看习题详情和答案>>
学生的编号i | 1 | 2 | 3 | 4 | 5 |
数学xi | 80 | 75 | 70 | 65 | 60 |
物理yi | 70 | 66 | 68 | 64 | 62 |
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
(3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
参考数据和公式:
? |
y |
| |||||||
|
. |
y |
. |
x |
5 |
![]() |
i=1 |
5 |
![]() |
i=1 |
x | 2 i |
残差和公式为:
5 |
![]() |
i=1 |
? |
y |
已知某校5个学生的数学和物理成绩如下表:
(Ⅰ)通过大量事实证明发现,学生的数学成绩和物理成绩具有很强的线性相关关系,用x表示数学成绩,用y表示物理成绩,根据上述表格求y与x的回归方程;
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?
参考公式和数据:回归直线方程:
=bx+a,其中b=
,a=
-b
;
xiyi=23190,
=24750,残差和公式为:
(yi-
i).
查看习题详情和答案>>
学生的编号i | 1 | 2 | 3 | 4 | 5 |
数学xi | 80 | 75 | 70 | 65 | 60 |
物理yi | 70 | 66 | 68 | 64 | 62 |
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?
参考公式和数据:回归直线方程:
? |
y |
| |||||||
|
. |
y |
. |
x |
5 |
![]() |
i=1 |
5 |
![]() |
i=1 |
x | 2 i |
5 |
![]() |
i=1 |
? |
y |
已知某校5个学生的数学和物理成绩如下:
(Ⅰ)通过大量事实证明发现,一个学生的数学成绩和物理成绩是具有很强的线性相关关系的,在上述表格中,用x表示数学成绩,用y表示物理成绩,求y关于x的回归方程;
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
提示:参考数据:
xiyi=23190,
=24750.
查看习题详情和答案>>
学生的编号 | 1 | 2 | 3 | 4 | 5 |
数学成绩xi | 80 | 75 | 70 | 65 | 60 |
物理成绩yi | 70 | 66 | 68 | 64 | 62 |
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
提示:参考数据:
5 |
![]() |
i=1 |
5 |
![]() |
i=1 |
x | 2 i |