题目内容

已知某校5个学生的数学和物理成绩如下表:
学生的编号i 1 2 3 4 5
数学xi 80 75 70 65 60
物理yi 70 66 68 64 62
(Ⅰ)通过大量事实证明发现,学生的数学成绩和物理成绩具有很强的线性相关关系,用x表示数学成绩,用y表示物理成绩,根据上述表格求y与x的回归方程;
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?
参考公式和数据:回归直线方程:
?
y
=bx+a
,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x
5
i=1
xiyi=23190,
5
i=1
x
2
i
=24750
,残差和公式为:
5
i=1
(yi-
?
y
i
)
分析:(I)分别做出横标和纵标的平均数,利用最小二乘法做出b的值,再做出a的值,写出线性回归方程,得到结果.
(II)做出残差平方差,得到结果是0,根据所给的残差平方和的范围,得到所求的线性回归方程是一个优逆方程.
解答:解:(I)
.
x
=70,
.
y
=66,
b=
80×70+75×66+70×68+65×64+60×62-5×70×66
802+752+702+652+602-5×702
=0.36,
a=40.8,
∴回归直线方程为y=0.36x+40.8.
(Ⅱ)∵残差和公式为:
5
i=1
(yi-
yi
)=0,
∵0∈(-0.1,0.1),
∴回归方程为优逆方程.
点评:本题考查变量间的相关关系,考查回归分析的应用,考查新定义问题,是一个基础题,注意题目的数字运算不要出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网