网址:http://m.1010jiajiao.com/timu_id_497320[举报]
1.(1)因为,所以
又是圆O的直径,所以
又因为(弦切角等于同弧所对圆周角)
所以所以
又因为,所以
相似
所以,即
(2)因为,所以
,
因为,所以
由(1)知:。所以
所以,即圆的直径
又因为,即
解得
2.依题设有:
令,则
3.将极坐标系内的问题转化为直角坐标系内的问题
点的直角坐标分别为
故是以
为斜边的等腰直角三角形,
进而易知圆心为,半径为
,圆的直角坐标方程为
,即
将代入上述方程,得
,即
4.假设,因为
,所以
。
又由,则
,
所以,这与题设矛盾
又若,这与
矛盾
综上可知,必有成立
同理可证也成立
命题成立
5. 解:由a1=S1,k=.下面用数学归纳法进行证明.
1°.当n=1时,命题显然成立;
2°.假设当n=k(kN*)时,命题成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命题对n=k+1.成立
由1°, 2°,命题对任意的正整数n成立.
6.(1)因为,
,
,所以
故事件A与B不独立。
(2)因为
所以
如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B—PD—C的正切值。
【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二问中解:取PD的中点E,连接CE、BE,
为正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,
∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。
查看习题详情和答案>>
(1)我们知道,△ABC为直角三角形的充要条件是存在一条边的平方等于另两边的平方和.类似地,试用三边的关系分别给出△ABC为锐角三角形的充要条件以及△ABC为钝角三角形的充要条件;(不需证明)
(2)由(1)知,若a2+b2=c2,则△ABC为直角三角形.试探究当三边a,b,c满足an+bn=cn(n∈N,n>2)时三角形的形状,并加以证明.
月份X | 1 | 2 | 3 | 4 |
用水量 | 4.5 | 4 | 3 | 2.5 |
∧ |
y |
(1),
则
(4分)
(2)由(1)知,则
①当时,
,令
或
,
在
上的值域为
(7分)
② 当时,
a.若
,则
b.若,则
在
上是单调减的
在
上的值域为
c.若则
在
上是单调增的
在
上的值域为
(9分)
综上所述,当时,
在
的值域为
当时,
在
的值域为
(10分)
当时,若
时,
在
的值域为
若时,
在
的值域为
(12分)
即 当时,
在
的值域为
当时,
在
的值域为
当时,
在
的值域为
查看习题详情和答案>>
某厂1—4月用水量(单位:百吨)的数据如下表:
月份X |
1 |
2 |
3 |
4 |
用水量 |
4.5 |
4 |
3 |
2.5 |
由散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是
,则b=
.
查看习题详情和答案>>