摘要:求证: 第Ⅱ卷附加题部分附加题部分包含选做题.必做题.满分40分.考试时间30分.
网址:http://m.1010jiajiao.com/timu_id_497290[举报]
1.(1)因为,所以
又是圆O的直径,所以
又因为(弦切角等于同弧所对圆周角)
所以所以
又因为,所以相似
所以,即
(2)因为,所以,
因为,所以
由(1)知:。所以
所以,即圆的直径
又因为,即
解得
2.依题设有:
令,则
3.将极坐标系内的问题转化为直角坐标系内的问题
点的直角坐标分别为
故是以为斜边的等腰直角三角形,
进而易知圆心为,半径为,圆的直角坐标方程为
,即
将代入上述方程,得
,即
4.假设,因为,所以。
又由,则,
所以,这与题设矛盾
又若,这与矛盾
综上可知,必有成立
同理可证也成立
命题成立
5. 解:由a1=S1,k=.下面用数学归纳法进行证明.
1°.当n=1时,命题显然成立;
2°.假设当n=k(kN*)时,命题成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命题对n=k+1.成立
由1°, 2°,命题对任意的正整数n成立.
6.(1)因为,,
,所以
故事件A与B不独立。
(2)因为
所以
16、如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,E,F,G分别是AA1,AC,BB1的中点,且CG⊥C1G.
(Ⅰ)求证:CG∥平面BEF;
(Ⅱ)求证:平面BEF⊥平面A1C1G.
查看习题详情和答案>>
(Ⅰ)求证:CG∥平面BEF;
(Ⅱ)求证:平面BEF⊥平面A1C1G.
(Ⅰ)已知函数f(x)=
.数列{an}满足:an>0,a1=1,且
=f(
),记数列{bn}的前n项和为Sn,且Sn=
[
+(
+1)n].求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”. 查看习题详情和答案>>
x |
x+1 |
an+1 |
an |
| ||
2 |
1 |
an |
2 |
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”. 查看习题详情和答案>>
过抛物线x2=4y的焦点F作倾斜角为α的直线交抛物线于P、Q两点,过点P作抛物线的切线l交y轴于点T,过点P作切线l的垂线交y轴于点N.
(Ⅰ)求证:|NF|=|TF|=|PF|;
(Ⅱ)若cosα=
,求此抛物线与线段PQ所围成的封闭图形的面积.
查看习题详情和答案>>
(Ⅰ)求证:|NF|=|TF|=|PF|;
(Ⅱ)若cosα=
4 | 5 |