摘要:所以当=时, 的最大值为5+4=9 -------
网址:http://m.1010jiajiao.com/timu_id_496943[举报]
已知幂函数
满足
。
(1)求实数k的值,并写出相应的函数
的解析式;
(2)对于(1)中的函数
,试判断是否存在正数m,使函数
,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数
满足
,得到![]()
因为
,所以k=0,或k=1,故解析式为![]()
(2)由(1)知,
,
,因此抛物线开口向下,对称轴方程为:
,结合二次函数的对称轴,和开口求解最大值为5.,得到![]()
(1)对于幂函数
满足
,
因此
,解得
,………………3分
因为
,所以k=0,或k=1,当k=0时,
,
当k=1时,
,综上所述,k的值为0或1,
。………………6分
(2)函数
,………………7分
由此要求
,因此抛物线开口向下,对称轴方程为:
,
当
时,
,因为在区间
上的最大值为5,
所以
,或
…………………………………………10分
解得
满足题意
查看习题详情和答案>>
| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
②函数f(x)在[0,1]是减函数,在[1,2]是增函数,
③当1<a<2时,函数y=f(x)-a有4个零点
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为5,
其中所有正确命题序号为
①④
①④
.| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
②函数f(x)在[0,1]是减函数,在[1,2]是增函数;
③当1<a<2时,函数y=f(x)-a有4个零点.
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为5.
其中所有正确命题序号为